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ABSTRACT

The following study examines the position and intensity differences of tropical cyclones (TCs) among the

Best-Track and five atmospheric reanalysis datasets to evaluate the degree to which reanalyses are appro-

priate for studying TCs. While significant differences are found in both reanalysis TC intensity and position,

the representation of TC intensity within reanalyses is found to be most problematic owing to its un-

derestimation beyond what can be attributed solely to the coarse grid resolution. Moreover, the mean life

cycle of normalized TC intensity within reanalyses reveals an underestimation of both prepeak intensification

rates as well as a delay in peak intensity relative to the Best-Track. These discrepancies between Best-Track

and reanalysis TC intensity and position can further be described through correlations with such parameters

as Best-Track TC age, Best-Track TC intensity, Best-Track TC location, and the extended Best-Track TC

size. Specifically, TC position differences within the 40-yr European Centre for Medium-Range Weather

Forecasts (ECMWF) Re-Analysis (ERA-40), ECMWF Interim Re-Analysis (ERA-I), and Modern Era

Retrospective-Analysis for Research and Applications (MERRA) exhibit statistically significant correlations

(0.27 # R # 0.38) with the proximity of TCs to observation dense areas in the North Atlantic (NATL) and

western North Pacific (WPAC). Reanalysis TC intensity is found to be most strongly correlated with Best-

Track TC size (0.53 # R # 0.70 for maximum 10-m wind speed; 20.71 # R # 20.53 for minimum mean sea

level pressure) while exhibiting smaller, yet significant, correlations with Best-Track TC age, Best-Track TC

intensity, and Best-Track TC latitude. Of the three basins examined, the eastern North Pacific (EPAC) has

the largest reanalysis TC position differences and weakest intensities possibly due to a relative dearth of

observations, the strong nearby terrain gradient, and the movement of TCs away from the most observation

dense portion of the basin over time. The smaller mean Best-Track size and shorter mean lifespan of Best-

Track EPAC TCs may also yield weaker reanalysis TC intensities. Of the five reanalyses, the smaller position

differences and stronger intensities found in the Climate Forecast System Reanalysis (CFSR) and Japanese

25-year Reanalysis (JRA-25) are attributed to the use of vortex relocation and TC wind profile retrievals,

respectively. The discrepancies in TC position between the Best-Track and reanalyses combined with the

muted magnitude of TC intensity and its partially nonphysical life cycle within reanalyses suggests that

caution should be exercised when utilizing these datasets for studies that rely either on TC intensity (raw or

normalized) or track. Finally, several cases of nonphysical TC structure also argue that further work is needed

to improve TC representation while implying that studies focusing solely on TC intensity and track do not

necessarily extend to other aspects of TC representation.

1. Introduction

The emergence of atmospheric reanalysis datasets has

provided tools of great utility for studying climate-

scale processes that include the impacts of larger-scale

mechanisms on tropical cyclones (TCs; e.g., Maloney

and Hartmann 2000a,b) and the potential feedbacks of

TCs upon the larger scales (e.g., Hart et al. 2007; Hart

2010). Reanalyses provide a unique opportunity for

studying TCs by providing complete spatial and tem-

poral data coverage over long time periods that are only

affected by changes in the observing system (Thorne and

Vose 2010). Previous climate-scale studies of TCs uti-

lizing reanalyses have included Hart et al. (2007) who

used the 40-year European Centre for Medium-Range
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Weather Forecasts (ECMWF) Re-Analysis (ERA-40;

Uppala et al. 2005) to quantify the environmental

‘‘memory’’ of TC passage. The ERA-40 was also used by

Sriver and Huber (2006) to calculate TC power dissi-

pation (Emanuel 2005) to argue that increases in sea

surface temperatures (SSTs) were driving changes in

power dissipation. In a separate study, data from the

ERA-40 were used to estimate the average global oce-

anic heat transport attributable to TCs (Sriver and

Huber 2007). Reanalyses have also been used to corre-

late TC activity with the strength of the meridional

temperature flux during the following winter to indirectly

determine whether TCs are significant contributors to at-

mospheric poleward heat transport (Hart 2010). Truchelut

and Hart (2011) utilized both reanalysis data and in situ

observations to identify candidate warm-core cyclones

for consideration for addition to the National Hurricane

Center (NHC) Best-Track dataset (Jarvinen et al. 1984;

Neumann et al. 1993) as TCs. In light of the increased

usage of reanalyses for studying TCs, guidance is neces-

sary to determine when the degree of TC representation

within reanalyses is sufficiently robust for such studies and

to quantify the strength of any nonphysical relationships

for TC position, intensity, and the life cycle of intensity.

The importance of properly representing TCs may

have implications that extend to accurately depicting

their larger-scale environment within reanalyses. While

the aggregate impact of TCs upon the coupled climate

has remained unquantified, localized effects of TC pas-

sage include SST anomalies lasting up to two months

after TC passage (Schenkel and Hart 2010) and moisture

and temperature anomalies that exist for as long as

several weeks (Hart et al. 2007). Other studies have

hypothesized that anomalously strong trade winds in

global climate models are due to the muted structure of

TCs (Trenberth and Fasullo 2007). Previous work has

also suggested that recurving TCs may alter the mid-

latitude Rossby wave pattern for weeks following TC

passage (McTaggart-Cowan et al. 2007; Riemer et al.

2008; Harr and Dea 2009; Cordeira 2010). McTaggart-

Cowan et al. (2007) also argued that recurving TCs can

both transfer substantial amounts of heat from low to

high latitudes and aid in the formation of new TCs.

Furthermore, recent work has also indicated that ag-

gregate TC power dissipation is strongly correlated with

the strength of meridional heat transport during the

following winter possibly indicating that TCs play a rel-

evant role in atmospheric poleward heat transport (Hart

2010). TCs are also known to contribute substantial

proportions of rainfall within certain basins (Jiang and

Zipser 2010). Given the influence of TCs on regional and

potentially global scales, the question is raised as to

whether the quality of the representation of the general

circulation within reanalyses suffers significantly, par-

ticularly on shorter time scales, due to the muted struc-

ture of TCs that primarily results from the coarse

resolution of reanalyses (e.g., Walsh et al. 2007).

While several studies have utilized reanalyses for

studying TCs, relatively few have quantitatively evalu-

ated TC representation within these datasets. Typically,

examination of the ability of reanalyses to represent TCs

has been limited to the frequency of TC detection using

automated tracking algorithms. The parameters chosen

for a given algorithm vary among each reanalysis with

thresholds subjectively chosen to yield detection rates

on the order of 75% or greater for Best-Track TCs. The

only attempt at comparing detection rates using a uni-

form algorithm was performed by Onogi et al. (2007)

who examined detection frequencies for the ERA-40

and the Japan Meteorological Agency (JMA) Japanese

25-year Re-Analysis (JRA-25; Onogi et al. 2007). While

over 80% of TCs globally were trackable within the

JRA-25, the same algorithm applied to the ERA-40

yielded global detection rates below 60% (Onogi et al.

2007). The lower detection frequencies in the ERA-40

were attributed to the weaker intensity of TCs within

this dataset, which failed to meet the detection

thresholds (Hatsushika et al. 2006). These results seem-

ingly contrast with those given by Uppala et al. (2004)

who show global detection rates of over 90% for the same

period of study within the ERA-40. Thus, while the

choice of an automated tracking algorithm is seemingly

objective, the thresholds used to identify TCs within

them are less so.

Despite the recent proliferation of reanalyses for use

in studying TCs, studies by Hatsushika et al. (2006),

Onogi et al. (2007), and Manning and Hart (2007) remain

the only attempts at evaluating reanalysis TC intensity

or structure. Hatsushika et al. (2006) utilized storm-

relative composited temperature anomalies to quan-

tify the reanalysis TC warm core for comparison with

previous observational work. The maximum compos-

ited temperature anomaly of 68C in the JRA-25

(Hatsushika et al. 2006) was found to be several de-

grees lower than the observations found in TC Hilda

(1964; Hawkins and Rubsam 1968) owing to the coarse

spatial resolution of the reanalysis and the compositing

process (Hatsushika et al. 2006). Onogi et al. (2007)

showed that both the ERA-40 and JRA-25 had a more

robust representation of the temperature anomalies as-

sociated with the TC warm core within the western North

Pacific (WPAC) relative to the eastern North Pacific

(EPAC; Onogi et al. 2007). These differences were at-

tributed to the relative sparseness of observations in the

EPAC (Hatsushika et al. 2006). Moreover, the peak

magnitude of the upper-level temperature anomaly
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within the ERA-40 was also up to 18C smaller than in

the JRA-25 (Onogi et al. 2007).

A more rigorous attempt at addressing reanalysis TC

representation was undertaken by Manning and Hart

(2007) who examined whether trends in the depiction of

North Atlantic (NATL) TCs within the ERA-40 were

significantly different from those in the Best-Track.

Manning and Hart (2007) determined that nonphysical,

statistically significant temporal trends likely existed in

reanalysis TC intensity and structure due to improve-

ments in the density of the observing system. Specifi-

cally, TCs occurring in the early period (1957–71) within

the ERA-40 were shown to not have statistically signif-

icant different intensities and structures from those TCs

that were one to two Saffir–Simpson categories weaker in

the Best-Track during the latter period (1988–2001;

Manning and Hart 2007).

While Manning and Hart (2007) provided the initial

attempt at examining TC intensity and structure in re-

analyses, there has yet to be a comprehensive inter-

comparison of both TC position and intensity in multiple

basins within the current generation of reanalysis data-

sets using a consistent tracking methodology. The fol-

lowing study seeks to quantify the depiction of TC

position, intensity, and the life cycle of intensity among

five reanalysis datasets to determine their suitability for

examining TCs. The remainder of this paper will be di-

vided into three parts. Section 2 will detail the data and

methodology used in this study. Section 3 will discuss the

variability of TC position and intensity within and

among reanalyses. Section 4 will provide a summary of

the results and some concluding thoughts.

2. Methodology

a. Data

For this study, TC position difference and intensity

are evaluated within five reanalysis datasets. Position

difference is defined here as the difference between the

Best-Track and reanalysis TC position. The reanalyses

chosen for this study include the ERA-40, the ECMWF

Interim Re-Analysis (ERA-I; Dee et al. 2011), the JRA-

25, the National Aeronautics and Space Administration

(NASA) Modern Era Retrospective-Analysis for Re-

search and Applications (MERRA; Rienecker et al.

2011), and the National Centers for Environmental

Prediction (NCEP) Climate Forecast System Reanalysis

(CFSR; Saha et al. 2010). Salient details of each rean-

alysis for this study are found in Table 1.

Three of the five reanalyses have unique properties

intended to improve TC representation. The first dis-

tinctive feature is the use of four-dimensional variational

data assimilation (4DVAR) in the ERA-I which con-

trasts with the use of three-dimensional variational data

assimilation (3DVAR) within the four remaining re-

analyses. In addition to handling asynoptic data more ac-

curately, 4DVAR allows for the influence of an observation

to be more strongly controlled by model dynamics

(Thépaut et al. 1996). As a result, 4DVAR should yield

improved performance in observation deficient regions

in which TCs are typically found (Thépaut 2006; Whitaker

et al. 2009; Dee et al. 2011). A second unique property is

the use of TC wind profile retrievals within the JRA-25

for all Best-Track TCs with a maximum 10-m wind

speed (VMAX10m) greater than or equal to 34 kt. TC

wind profile retrievals use Best-Track data to generate

synthetic dropwindsondes that approximate the TC

wind profile at the Best-Track location (Hatsushika et al.

2006) yielding reduced position differences and stronger

reanalysis TC intensities (Hatsushika et al. 2006; Onogi

et al. 2007). A third distinctive feature is the use of

vortex relocation in the CFSR. Vortex relocation in-

volves either moving the vortex from its position in the

first-guess field to its Best-Track location or inserting

a synthetic vortex into the first-guess profile if the ini-

tial vortex is absent or too weak for the given spatial

resolution. In addition to correcting TC position, im-

provements in reanalysis TC intensity will likely result

from the TC being moved into the correct environment.

Furthermore, observations within the TC are more likely

TABLE 1. Salient characteristics of the CFSR, ERA-40, ERA-I, JRA-25, and MERRA for this study. Included in the chart is the native

resolution of each reanalysis (Native resolution), the resolution at which the data is available at in isobaric coordinates in this study

(Postprocessed resolution), the period (YYYY.M) over which each reanalysis is available over at the time of this research (Reanalysis

period), the type of data assimilation method used (DA type), and whether TCs received any supplemental treatment (TC treatment). For

the number denoting the resolution, T refers to the mean wave truncation number, and L refers to the number of vertical levels. The asterisk

denotes that the values given represent the approximate horizontal resolution for the available data due to the use of a reduced Gaussian grid.

Reanalysis Native resolution Postprocessed resolution Reanalysis period DA type TC treatment

CFSR T382 L64 0.508 3 0.508 L37 1979.0–present 3DVAR Vortex relocation

ERA-40 T159 L60 1.138 3 1.138 L16* 1957.9–2002.8 3DVAR None

ERA-I T255 L60 0.708 3 0.708 L37* 1989.0–present 4DVAR None

JRA-25 T106 L40 1.258 3 1.258 L23 1979.0–present 3DVAR TC wind profile retrieval

MERRA 0.508 3 0.678 L72 0.508 3 0.678 L42 1979.0–present 3DVAR None
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to be accepted during data assimilation due to the TC

being properly located within the first-guess field (Liu

et al. 2000).

Several other improvements with more secondary

impacts on TC representation are found in the reanalyses.

Among these is the use of raw satellite radiances in

the CFSR, ERA-I, and MERRA as opposed to one-

dimensional variational data assimilation (1DVAR) re-

trievals since the latter of the two assimilation methods

is more difficult to establish observation errors for

(Andersson et al. 2005). Another improvement is the

use of variational bias correction of satellite radiances

in the CFSR, ERA-I, and MERRA. Instead of making

manual changes to radiances, which can be error prone

(Dee and Uppala 2009), variational bias correction au-

tomatically adjusts radiances to be consistent with other

observations and the model in order to dynamically

account for changes in biases (Derber and Wu 1998; Dee

and Uppala 2009). Both variational bias correction and

the ingestion of raw radiances have a stronger impact

on the environment than the TC since the assimilation

of satellite data can be severely limited by clouds and

precipitation (Andersson et al. 2005). In fact, the ERA-I

is the only reanalysis that assimilates radiances affected

by clouds and precipitation (Dee et al. 2011) either di-

rectly or indirectly through a 1DVAR 1 4DVAR ap-

proach (Bauer et al. 2006a,b). Additional improvements

specifically found for the ERA-I over the ERA-40 in-

clude a better formulation of the background error

constraint, a new humidity analysis, improvements in

the quality control of the input data, and better model

physics that include an improved radiative transfer model

(Simmons et al. 2007; Dee et al. 2011). Lastly, MERRA

employs an incremental analysis update (IAU) that grad-

ually corrects the forecast model through an additional

model tendency term implemented during a second hind-

cast, which reduces model shock (Bloom et al. 1996).

Additionally, the spindown of the Hadley cell that occurs

within reanalyses as a result of excessive precipitation

(Andersson et al. 2005) is also lessened through the use of

the IAU (Rienecker et al. 2011).

The time period from 1979 to 2001 is chosen for study

to provide maximum overlap among reanalyses and for

coinciding with the satellite era. It should be noted that

the ERA-I is only available beginning in 1989 at the time

of this research, although it is examined here for com-

pleteness. The comparisons provided in this study do not

account for the exclusion of earlier years (1979–88) by the

ERA-I during which the observing system was inferior

(Uppala et al. 2005; Dee and Uppala 2009; Rienecker

et al. 2011). The EPAC, NATL, and WPAC are selected

for the purposes of brevity and to avoid the larger un-

certainty of Best-Track data within other basins (Landsea

et al. 2006). Data used to evaluate TC location and in-

tensity are from the NHC Best-Track dataset within the

EPAC and NATL and the Joint Typhoon Warning

Center (JTWC) Best-Track dataset (Chu et al. 2002)

within the WPAC. Despite the fact that the Best-Track is

currently the most accurate and comprehensive archive

of TC position and intensity, it is still prone to consider-

able uncertainty given that the dataset is partially derived

from a forecaster’s subjective estimate (e.g., Landsea

et al. 2004). It should also be noted that Best-Track mean

sea level pressure (MSLPmin) is unavailable for many

TCs within each basin such that computations involving

MSLPmin consist of a smaller subset of storms (36.6% of

total TCs from 1979 to 2001; 48.4% of total TCs from

1989 to 2001). The extended Best-Track dataset

(Demuth et al. 2009) is also used in this study to permit

comparison of TC size to the variability of TC position

difference and intensity. However, the limited availability

of extended Best-Track data restricts the results to eval-

uating TC size data from 1988 to 2001 within the NATL.

b. Method

TCs are tracked manually according to the method-

ology of Manning and Hart (2007) who utilized MSLPmin

and maximum 925-hPa relative vorticity to locate the TC

using the Best-Track position as the first guess. Manual

tracking is preferred here given that choosing an objec-

tive threshold for automatic tracking algorithms is diffi-

cult owing to the dependence of these thresholds on the

resolution of the dataset (Walsh et al. 2007) as was pre-

viously discussed (e.g., Uppala et al. 2004; Onogi et al.

2007). It should be noted that some TCs are unable to

be manually tracked (0.16% to 1.37% of 6-h Best-Track

data; this and all subsequently presented ranges are the

minimum and maximum values from the five reanalyses

for a given parameter unless explicitly mentioned other-

wise) due to the inability to locate an MSLPmin or relative

vorticity maxima within the reanalysis. Only Best-Track

entries that are able to be tracked within all five rean-

alyses are included in the analysis performed here.

Along with the position of the reanalysis TC, VMAX10m

and MSLPmin within a 78 3 78 box surrounding the an-

alyzed TC center are recorded for each TC that is able to

be tracked. To facilitate the diagnosis of relationships

with Best-Track TC intensity, both position difference

and reanalysis TC intensity are binned into four cate-

gories stratified according to Best-Track intensity:

tropical depressions (VMAX10m , 34 kt), tropical storms

(34 kt # VMAX10m , 64 kt), category 1–2 TCs (64 kt #

VMAX10m , 96 kt), and category 3–5 TCs (VMAX10m $

96 kt). It should be noted that all significance testing

and calculation of standard errors in this study con-

servatively utilize the number of distinctly named TCs
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for the sample size rather than the number of 6-h Best-

Track points since the latter quantity is highly in-

terdependent. In particular, a given TC will only be

counted once for each intensity bin that it falls within

during its lifetime regardless of how many 6-h Best-

Track data points occur within a given bin. As an ex-

ample, NATL TC Andrew (1992) is counted only once

for each of the four intensity bins since it spent at least

one Best-Track time within each bin while strength-

ening to category 5 intensity.

To quantify the spatial variability of a given quantity,

gridded maps with a horizontal resolution of 28 latitude

by 28 longitude are constructed. Specifically, maps are

made for mean position difference, mean VMAX10m,

mean MSLPmin, correlation coefficients calculated be-

tween Best-Track and reanalysis VMAX10m, and cor-

relation coefficients computed between Best-Track and

reanalysis MSLPmin. For the gridded maps of mean

position difference and mean intensity, the value at each

grid point is a weighted average of all TCs passing within

250 km using a Cressman weighting (Cressman 1959).

Gridded maps of correlation coefficients computed be-

tween Best-Track and reanalysis TC intensity use all

TCs passing within 250 km of a given grid point. Mean

values and correlation coefficients are only calculated for

locations in which at least three distinctly named TCs are

found for a grid point. The computation of correlation

coefficients also requires at least 10 Best-Track entries

present at a grid point.

Further exploration of the variability of mean position

difference, mean VMAX10m, and mean MSLPmin is un-

dertaken by correlating these quantities with Best-Track

age, Best-Track latitude, Best-Track MSLPmin, Best-

Track VMAX10m, extended Best-Track radius of 34-kt

winds (EBTR34), and the distance of the Best-Track TC

relative to the location of minimum position difference in

each basin within the ERA-40, ERA-I, and MERRA

(denoted by circles in Fig. 1). The latter quantity serves as

a proxy for observation density in the ERA-40, ERA-I,

and MERRA given that regions of minimum position

difference in the NATL and WPAC are generally collo-

cated with areas of high observation density (Hatsushika

et al. 2006; Manning 2007). In this study, Best-Track age is

defined according to the definition given by Kossin et al.

(2007) as the time since the TC first reached tropical

storm intensity (VMAX10m $ 34 kt). For the purposes of

this study, the radius of 34-kt winds is used as a metric for

TC size because of its stronger correlation with intensity

within the Best-Track and reanalyses (e.g., 0.53 # R #

0.70 for VMAX10m and the radius of 34-kt winds as seen

in Table 3) in contrast to the radius of the outermost

closed isobar (0.34 # R # 0.46 for VMAX10m and the

radius of the outermost closed isobar which is not shown).

It should be noted that while there are several metrics

that could be used to quantify TC size (e.g., radius of

34-kt winds, radius of outermost closed isobar), these

quantities are not necessarily equivalent (Merrill 1984).

In this study, correlation coefficients computed for all

TCs are only considered significant when the majority of

entries approximately exceed a threshold of R 5 0.30.

Although the sample sizes are large enough to make the

correlation coefficients statistically significant at lower

values, R 5 0.30 is chosen as the threshold for mean-

ingful correlations so as to narrow the focus of this study.

Lastly, differences in the mean evolution of TC intensity

with Best-Track age are examined in the reanalyses and

the Best-Track by normalizing intensity within each da-

taset by the climatological standard deviation before

binning and averaging each value according to its maxi-

mum lifetime Best-Track intensity and Best-Track age.

3. Results

a. Position differences

1) SPATIAL VARIABILITY OF POSITION

DIFFERENCES

Several important similarities among reanalyses are

found in the spatial variability of mean position differ-

ences in Fig. 1. First, position differences are generally

found to decrease from southeast to northwest within

the NATL and WPAC in the ERA-40, ERA-I, and

MERRA. Specifically, mean reanalysis TC position is

biased southwestward relative to the Best-Track within

the NATL and WPAC in these three datasets. All three

of these reanalyses exhibit a minimum in position dif-

ference within the NATL (WPAC) that occurs over the

northeastern United States (northeastern China),

which is approximately coincident with the region of

highest observation density in the basin (Hatsushika

et al. 2006; Manning 2007; Vecchi and Knutson 2008).

Position difference also appears to isotropically decrease

toward these areas of minimum position difference

suggesting that the increasing density of observations

that occurs towards these landmasses is helping to cor-

rect TC position. Correlation coefficients calculated to

quantify the relationship between position difference

and the location of the Best-Track TC relative to these

areas of minimum position difference yield values

ranging between 0.27 and 0.38 (Table 2). Although these

correlations are relatively weak, they seem to indicate

that observation density partially determines the mag-

nitude of position difference (Hatsushika et al. 2006;

Manning 2007; Vecchi and Knutson 2008).

The reduction of position differences from southeast

to northwest in the NATL and WPAC within these three
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FIG. 1. Plan view of the magnitude (shaded) and vector (arrow) mean position differences (km) for the (a) CFSR, (b) ERA-40, (c) ERA-I,

(d) JRA-25, and (e) MERRA for TCs passing within 250 km of each grid point in the EPAC, NATL, and WPAC. Position difference is

defined as the difference between the Best-Track and reanalysis TC position. Vectors point from the Best-Track to the reanalysis TC position

from tail to head with the length of the vector proportional to the magnitude of the difference. Vectors are not drawn for mean position

difference magnitudes less than 100 km. The black circles denote the mean location of minimum position differences in the ERA-40, ERA-I,

and MERRA for each basin. Position difference is interpolated to a 28 latitude by 28 longitude grid with each grid point representing the

average of the position difference weighted by its distance from the grid point. Mean position differences are provided only at grid points at

which at least three distinctly named TCs are found. The grid is smoothed once with a nine-point smoother.
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datasets could be due to several factors. One potential

influence is the relative sparseness of in situ observations

in the eastern NATL and WPAC (Hatsushika et al. 2006;

Manning 2007; Vecchi and Knutson 2008). Given that

track is largely a time integral of steering flow especially

in a coarse reanalysis, small deviations in the steering

flow over time without observations to correct the po-

sition of the TC could be responsible for significant track

displacements. Furthermore, displacements in TC po-

sition could result in a storm that is stronger (weaker)

than observed if it moves into a more (less) favorable

environment than in reality. These resulting errors in

reanalysis TC intensity due to position difference may

further feedback onto position difference due to the pos-

itive correlation between intensity and the depth of the

steering flow within models (Dong and Neumann 1986;

Velden 1993). Incorrect tracks could also potentially result

from the misrepresentation of interactions between TCs

and larger scales due to the TC being incorrectly located.

In addition to being responsible for increased track er-

rors in the southeastern portion of the basin, the feed-

backs associated with track errors may also explain

why the relationship between TC position difference

and reanalysis TC MSLPmin or VMAX10m is relatively

weak (Table 2). Specifically, with the exception of the

MERRA, the magnitude of correlation coefficients be-

tween TC position difference and reanalysis TC intensity

is generally smaller than 0.30 in the majority of re-

analyses. Additionally, any correlations that may exist

could be the result of stronger TCs being easier to track

than less intense storms, given the diffuse structure of

weaker storms. Lastly, the improper depiction of TC beta

gyres (Chan and Williams 1987; Fiorino and Elsberry

1989) owing to the coarse resolution of the reanalyses

may also yield a southeastward displacement of reanalysis

TCs relative to the Best-Track due to an underestimation

of the resulting northwestward self-propagation in the

Northern Hemisphere.

In spite of the fact that correlations are small between

position difference and Best-Track TC intensity (not

shown), position difference is found to decrease substan-

tially for stronger Best-Track TC intensities, as seen in

Fig. 2a. Specifically, category 3–5 TCs have mean position

differences that are 25% smaller than tropical depressions

in the ERA-40, ERA-I, and MERRA. The smaller mean

position differences as well as the lower standard de-

viations may be explained by the fact that a larger frac-

tion of Best-Track major TCs generally occurs in more

observation dense portions of the NATL and WPAC

(Hatsushika et al. 2006; Manning 2007; Vecchi and

Knutson 2008) improving TC track. A secondary factor

may be due to Best-Track TCs with stronger VMAX10m

(MSLPmin) having larger median EBTR34 (Kimball and

Mulekar 2004), which is also supported by the correlations

in Tables 3 and 4 (R 5 0.56 for VMAX10m; R 5 20.59 for

MSLPmin). These strong correlations imply that more

intense TCs are better sampled by observations due to

their larger size which may help to correct their position.

Furthermore, reanalysis TC intensity also appears to suffer

more for TCs with smaller EBTR34 (Tables 3 and 4) po-

tentially feeding back onto position differences. Smaller,

weaker TCs may also have larger position differences due

to reanalyses being unable to properly resolve the impact

of TC beta gyres on storm motion. In contrast to the ERA-

40, ERA-I, and MERRA, the CFSR and JRA-25 exhibit

relatively small changes in TC position differences across

each basin. The smaller magnitude and lack of significant

gradients in position difference is seemingly attributable to

the use of vortex relocation within the CFSR and TC wind

profile retrievals within the JRA-25.

In addition to position differences being maximized in

the southeastern portion of the NATL and WPAC, a

TABLE 2. Correlation coefficients calculated between TC position difference for TCs from the EPAC, NATL, and WPAC in the CFSR,

ERA-40, ERA-I, JRA-25, and MERRA with reanalysis TC VMAX10m (Reanalysis VMAX10m), reanalysis TC MSLPmin (Reanalysis

MSLPmin), and the distance of the Best-Track TC relative to the location of mean minimum TC position difference in each basin (Relative

location). The mean minimum TC position difference within each basin is calculated from its mean location in the ERA-40, ERA-I, and

MERRA given its strong correlation with observation density in these datasets. The first correlation coefficient is for only EPAC TCs (N

5 391 in CFSR, ERA-40, JRA-25, and MERRA; N 5 230 in ERA-I), the correlation coefficient following the first slash is for only NATL

TCs (N 5 316 in CFSR, ERA-40, JRA-25, and MERRA; N 5 178 in ERA-I), and the correlation coefficient following the second slash is

for only WPAC TCs (N 5 676 in CFSR, ERA-40, JRA-25, and MERRA; N 5 411 in ERA-I). Italics denote where correlation coefficients

are significantly different from zero at the 95% confidence level while boldface denote where correlation coefficients are significantly

different from zero at the 99% confidence level.

Dataset Reanalysis VMAX10m Reanalysis MSLPmin Relative location

CFSR 20.22/20.31/20.27 0.23/0.18/0.16 0.04/0.12/0.15

ERA-40 20.11/20.25/20.17 0.16/0.18/0.33 20.03/0.38/0.31

ERA-I 20.24/20.26/20.22 0.24/0.23/0.32 0.04/0.29/0.28

JRA-25 20.22/20.24/20.04 0.12/0.01/0.08 0.00/0.11/0.11
MERRA 20.30/20.36/20.30 0.26/0.30/0.40 0.05/0.38/0.27
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FIG. 2. Box and whiskers plots of (a) position difference magnitude (km), (b) VMAX10m (kt), and (c) MSLPmin

(hPa) for TCs in the EPAC, NATL, and WPAC for each of the five reanalyses stratified by the four Best-track

intensity categories used in this study. The CFSR, ERA-40, ERA-I, JRA-25, and MERRA correspond with color

coding of blue, red, green, cyan, and orange, respectively. The mean of the sample is denoted by a white square

printed within each box. The number of distinctly named TCs for the CFSR, ERA-40, JRA-25, and MERRA is

denoted at the top of the figure for each intensity category while the number of distinctly named TCs for the ERA-I is

given in parentheses. The dashed lines connect the mean of each intensity category for each reanalysis to help identify

relationships between each parameter and Best-track TC intensity.
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second region of relatively larger position differences is

present in the northeastern portion of the NATL and

WPAC. Generally, reanalysis TCs in this area are dis-

placed westward compared to the Best-Track (Fig. 1). One

factor possibly responsible for this maximum in posi-

tion difference is the low density of observations found

in this region (Hatsushika et al. 2006; Manning 2007;

Vecchi and Knutson 2008). Among plausible secondary

influences is the climatological preference for the in-

teraction of extratropical cyclones and TCs to occur in the

northern NATL and WPAC (Hart and Evans 2001; Jones

et al. 2003), which may displace the analyzed reanalysis

TC position toward the extratropical cyclone. An addi-

tional factor is the proximity of TCs to well-resolved,

large-scale low pressure areas (e.g., Aleutian low, Ice-

landic low), which may shift the reanalysis TC location

toward these regions of low pressure.

A third area of substantially larger TC position dif-

ferences within each reanalysis, except in the JRA-25, is

the EPAC (Fig. 1). Mean position differences are as large

as 400 km in the ERA-40, 400 km in MERRA, and

300 km in the ERA-I. These position differences generally

exhibit a southeastward displacement in reanalysis TC

position relative to the Best-Track. Statistically insignificant

correlation coefficients (R , 0.05, Table 2) are found

between position difference and the location of the Best-

Track TC relative to the area of minimum position dif-

ference in the EPAC. Such a result is expected given the

absence of a relatively observation dense region in this

basin (Hatsushika et al. 2006; Manning 2007; Vecchi and

Knutson 2008). Moreover, while NATL and WPAC TCs

are moving toward the most observationally dense re-

gion in the basin allowing position to be gradually cor-

rected over time, EPAC TCs are moving away from the

most observation-rich region within the basin conceiv-

ably causing degradation in position over the lifespan of

the TC. Further, the southeastward displacement of re-

analysis TCs relative to the Best-Track may be indicative

of a slightly weaker subtropical high that potentially re-

sults from the inability of reanalyses to capture the feed-

backs between TCs and the larger scales. The particularly

poor representation of reanalysis TC intensity (section

3b) in the EPAC also may contribute to the larger posi-

tion differences given the correlations between position

difference and reanalysis TC intensity (Tables 3 and 4).

An additional factor influencing position differences

in the EPAC is the elevated terrain found upstream of

the basin in Mexico. Previous work has argued that this

complex topography plays an important role in dictating

whether TCs move westward toward the central Pacific

or recurve into Mexico (Zehnder 1993). In light of this

fact and the likelihood that reanalyses cannot adequately

resolve this mountainous terrain, it seems probable

that the effects of elevated topography on TC tracks are

TABLE 3. Correlation coefficients calculated between VMAX10m for TCs from the EPAC, NATL, and WPAC in the CFSR, ERA-40,

ERA-I, JRA-25, MERRA, and Best-Track with EBTR34, Best-Track VMAX10m (BT VMAX10m), Best-Track latitude (BTLat), and Best-

Track age (BTAge). The first correlation coefficient is for only EPAC TCs (N 5 391 in CFSR, ERA-40, JRA-25, and MERRA; N 5 230 in

ERA-I), the correlation coefficient following the first slash is for only NATL TCs (N 5 316 in CFSR, ERA-40, JRA-25, and MERRA; N 5

178 in ERA-I), and the correlation coefficient following the second slash is for only WPAC TCs (N 5 676 in CFSR, ERA-40, JRA-25, and

MERRA; N 5 411 in ERA-I). Correlation coefficients for EBTR34 are computed for a smaller subset consisting of NATL TCs from 1988–

2001 appearing in the extended Best-Track. NA denotes that correlation coefficients are not computed between the quantities in question.

Italics denote where correlation coefficients are significantly different from zero at the 95% confidence level while boldface denote where

correlation coefficients are significantly different from zero at the 99% confidence level.

Dataset EBTR34 BT VMAX10m BTLat BTAge

CFSR NA/0.57/NA 0.36/0.61/0.57 20.01/0.22/0.17 0.23/0.34/0.36
ERA-40 NA/0.53/NA 0.20/0.45/0.38 20.09/0.31/0.25 20.01/0.25/0.30

ERA-I NA/0.61/NA 0.26/0.47/0.40 0.11/0.34/0.22 0.10/0.38/0.37

JRA-25 NA/0.65/NA 0.57/0.73/0.70 0.22/0.37/0.33 0.24/0.38/0.38

MERRA NA/0.70/NA 0.26/0.51/0.42 0.14/0.48/0.44 0.16/0.47/0.38
Best track NA/0.56/NA 1.00/1.00/1.00 0.03/0.12/0.03 0.07/0.25/0.22

TABLE 4. As in Table 3 but for correlation coefficients computed

between MSLPmin for TCs from the EPAC and NATL and each of

the parameters given in Table 3 except Best-Track VMAX10m,

which is replaced by Best-Track MSLPmin (BT MSLPmin). The first

correlation coefficient is for only EPAC TCs (N 5 212 in CFSR,

ERA-40, JRA-25, and MERRA; N 5 198 in ERA-I) while the

correlation coefficient following the slash is for only NATL TCs

(N 5 244 in CFSR, ERA-40, JRA-25, and MERRA; N 5 153 in

ERA-I). WPAC TCs are excluded from these computations given

that Best-Track MSLPmin is widely unavailable in this basin.

Dataset EBTR34 BT MSLPmin BTLat BTAge

CFSR NA/20.71 0.43/0.61 20.09/20.29 20.14/20.39

ERA-40 NA/20.53 0.29/0.46 0.03/20.24 0.19/20.26
ERA-I NA/20.60 0.30/0.48 20.11/20.29 0.06/20.35

JRA-25 NA/20.70 0.59/0.70 20.09/20.31 0.09/20.36

MERRA NA/20.66 0.33/0.50 20.13/20.36 0.08/20.39
Best track NA/20.59 1.00/1.00 0.02/20.10 20.06/20.31
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misrepresented and that the resulting position differ-

ences likely cannot be corrected owing to the relative

lack of observations in the EPAC (D. Kleist 2011, personal

communication). Lastly, it remains plausible that the

poorly resolved topography may result in a higher re-

jection rate of valid observations in this basin further

degrading TC track.

2) COMPARISON OF POSITION DIFFERENCES

AMONG REANALYSES

Dissimilarities in TC position difference among the

reanalyses can be found in Fig. 2a. Of the five reanalysis

datasets, the ERA-40 and CFSR are found to have the

largest and smallest position differences, respectively. As

expected, the use of vortex relocation in the CFSR and

TC wind profile retrievals within the JRA-25 lead to TC

position differences that are much smaller than for the

ERA-40, ERA-I, and MERRA. These two methodolo-

gies also yield smaller variability in position differences

with increasing intensity than either the ERA-40, ERA-I,

or MERRA as evidenced by the lower standard de-

viations.

A more uniform way to analyze position differences

is by normalizing them by the horizontal grid resolution

of the reanalysis (Table 5). Assuming perfect represen-

tation of TC tracks within each reanalysis and the Best-

Track, mean normalized TC position differences should

be less than half of the length of a diagonal of a gridbox

(0.71Dx) because of the limitations of representing TC

position on a discrete grid. However, only the JRA-25 is

below this threshold for all Best-Track intensity bins.

Mean normalized TC position differences show that the

MERRA has the largest differences of all datasets

ranging between 2.12Dx and 2.92Dx (149 and 205 km). In

comparison, the JRA-25 has mean differences ranging

between 0.43Dx and 0.67Dx (57 and 88 km), which is

nearly 2.5 times smaller than the CFSR (0.81Dx and

1.60Dx; 43 and 84 km). This result is suggestive of the

particular effectiveness of TC wind profile retrievals in the

JRA-25 at reducing position difference relative to the use

of vortex relocation in the CFSR.

Further examination of the three remaining reanalyses

shows that mean position differences in the MERRA are

at most 25 km smaller than the ERA-40 (164 and 214 km;

Fig. 2a). Given the relatively high grid resolution of the

MERRA, these mean position differences yield normalized

values that are substantially larger (0.74 and 1.11 Dx

larger; Table 5) than those within the ERA-40. Addi-

tionally, mean position differences in the ERA-I (100

and 154 km) are found to be 60 and 65 km smaller than

in the ERA-40 for each intensity bin. While these re-

duced position differences imply substantial improve-

ment of the ERA-I relative to the ERA-40, normalized

mean values exhibit only small discrepancies between

the two datasets with maximum differences of 0.28Dx.

These results are suggestive of little relative reduction in

mean position differences between these datasets. The

larger position differences in the ERA-40, ERA-I, and

MERRA compared to the CFSR and JRA-25 suggests

that the use of methodologies that explicitly correct TC

location trump all other improvements (e.g., 4DVAR, in-

creased horizontal resolution, improved microphysics).

b. Intensity

1) SPATIAL VARIABILITY OF INTENSITY

The coarse resolution of reanalyses generally precludes

their replication of Best-Track TC intensity (Walsh et al.

2007) instead yielding only modest changes in reanalysis

TC intensity compared to the Best-Track. Figures 3 and

4 show mean VMAX10m and MSLPmin in the EPAC,

NATL, and WPAC for the Best-Track and reanalyses. As

a note, WPAC TCs have mean values of MSLPmin that

are stronger than EPAC and NATL TCs as a result of the

lower environmental pressure (Dvorak 1975; Knaff and

Zehr 2007). With the exception of the CFSR within the

NATL and WPAC, substantial portions of each basin

within the remaining reanalyses have mean VMAX10m

that fail to meet the Best-Track tropical depression

threshold (30 kt). Furthermore, while mean values

of Best-Track intensity are typically maximized in the

central portion of the EPAC, NATL, and WPAC, re-

analyses exhibit peak values that are displaced northward

in the latter two basins and zonally within the EPAC

(Figs. 3 and 4).

Although reanalyses are unable to resolve Best-Track

TC intensity, these datasets would still be of some utility if

the spatial variability of reanalysis TC intensity is well

correlated to the Best-Track (thus providing for a useful

bias-corrected relationship). To examine this idea, corre-

lation coefficients are calculated between Best-Track

and reanalysis TC VMAX10m (MSLPmin) yielding values

between 0.20 and 0.73 (0.29 and 0.70) as seen in Table 3

TABLE 5. TC position differences normalized by the horizontal

resolution of the corresponding reanalysis for the four Best-Track

intensity bins for TCs from the EPAC, NATL, and WPAC in the

CFSR, ERA-40, ERA-I, JRA-25, and MERRA. The first number

is the mean normalized position difference and the second number

is the standard error of the mean of each subset.

Dataset

Tropical

depression

Tropical

storm

Category

1–2

Category

3–5

CFSR 1.60 6 0.05 1.26 6 0.04 0.93 6 0.05 0.81 6 0.08

ERA-40 1.81 6 0.04 1.63 6 0.04 1.49 6 0.04 1.38 6 0.05

ERA-I 2.09 6 0.05 1.81 6 0.05 1.50 6 0.05 1.35 6 0.07

JRA-25 0.67 6 0.02 0.51 6 0.01 0.46 6 0.01 0.43 6 0.01

MERRA 2.92 6 0.06 2.59 6 0.05 2.25 6 0.07 2.12 6 0.09
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FIG. 3. Plan view of mean VMAX10m (kt) for TCs from the (a) CFSR, (b) ERA-40, (c) ERA-I, (d) JRA-25, (e) MERRA, and (f) Best-

Track for TCs passing within 250 km of each grid point in the EPAC, NATL, and WPAC. VMAX10m is interpolated to a 28 latitude by 28

longitude grid with each grid point representing the average of VMAX10m weighted by its distance from the grid point. Mean VMAX10m is

provided only at grid points at which at least three distinctly named Best-Track TCs are found. The grid is smoothed once with a nine-point

smoother.
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FIG. 4. As in Fig. 3 but for MSLPmin (hPa) within the EPAC and NATL. Note that mean values are not computed within the WPAC due to

the lack of availability of Best-Track MSLPmin within this basin.
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(Table 4). Significant variability is noted among basins

with the strongest (weakest) relationships found in the

NATL (EPAC). In particular, correlation coefficients

in the NATL typically explain nearly 15% (13%) more of

the variance than EPAC TCs for VMAX10m (MSLPmin).

The lower correlations in the EPAC may be attributable to

the sparseness of observations or the movement of TCs

away from the most observation dense portion of the basin

making it difficult for observations to nudge reanalysis

TC intensity toward the correct intensity. Moreover, the

smaller size of EPAC TCs (Chavas and Emanuel 2010)

may also degrade reanalysis TC intensity given the posi-

tive correlation between EBTR34 and reanalysis TC in-

tensity (Tables 3 and 4). A third factor may be the

inability to resolve the effects of elevated terrain on TCs,

which include serving as an important player in the gen-

esis and intensification of TCs near the Mexican coast

(Zehnder 1991; Turk et al. 1995; Mozer and Zehnder

1996; Farfán and Zehnder 1997; Zehnder et al. 1999;

Molinari et al. 2000). The lack of observations in this

region (which may otherwise have helped compensate

for the inability of the reanalysis to resolve the complex

topography) may prevent TC intensity from being

nudged closer to its Best-Track value (D. Kleist 2011,

personal communication). Lastly, it remains plausible

that TC intensity is weaker due to the speculated larger

rejection rate of observations in the EPAC that results

from the mountainous terrain.

Significant variability of correlation coefficients between

Best-Track and reanalysis TC intensity is also observed

among datasets. In particular, the CFSR and JRA-25

exhibit stronger mean intensities and larger correlations

with the Best-Track than either the ERA-40, ERA-I, or

MERRA. The variance explained by these relationships

is at least 6% (8%) and 26% (24%) larger in the CFSR

and JRA-25 for VMAX10m (MSLPmin), respectively,

relative to the other three reanalyses suggesting the value

of supplementing reanalyses with Best-Track data to im-

prove intensity. Additionally, the ERA-40, ERA-I, and

MERRA have smaller correlation coefficients of similar

magnitude with the Best-Track implying that the im-

provements found in the ERA-I and MERRA over the

ERA-40 do not significantly affect reanalysis TC intensity.

These results argue that reanalyses are able to represent

the variability of Best-Track intensity with moderate suc-

cess given that the explained variance is as high as 53%.

To further explore the variability of reanalysis TC in-

tensity, gridded maps of correlation coefficients between

reanalysis and Best-Track TC VMAX10m (MSLPmin) are

presented in Fig. 5 (Fig. 6). The majority of all three ba-

sins exhibit moderately strong correlations (R $ 0.60) in

the JRA-25, while robust correlations within the CFSR

and MERRA are found only within the NATL. None of

the three basins within the ERA-I or ERA-40 exhibits

strong correlations in the majority of any basin. Exam-

ining the spatial variation of correlation coefficients among

basins demonstrates that correlations within the NATL

are generally larger than those in the WPAC with even

smaller magnitudes in the EPAC (Figs. 5 and 6). The

smaller values in the WPAC could be due to the stronger

mean Best-Track intensity of TCs, which is more difficult to

resolve or deficiencies in observation coverage (Hatsushika

et al. 2006; Manning 2007; Vecchi and Knutson 2008).

2) RELATIONSHIP BETWEEN LATITUDE AND TC
SIZE ON REANALYSIS TC INTENSITY

Several of the factors responsible for small correlation

coefficients between Best-Track and reanalysis TC

intensity in the NATL and WPAC likely are associ-

ated with nonphysical increases in reanalysis TC in-

tensity from south to north. As seen in Tables 3 and 4,

correlation coefficients between reanalysis VMAX10m

(MSLPmin) and Best-Track latitude range between 0.17

and 0.48 (20.36 and 20.24) compared to significantly

lower correlations of 0.03 and 0.12 (20.10 and 0.02) in

the Best-Track. Correlations are observed to be slightly

stronger within the NATL than the WPAC with smaller

values in the EPAC.

Potential explanations for the large correlation be-

tween reanalysis TC intensity and Best-Track latitude

include the relatively greater observation density

within midlatitudes (Hatsushika et al. 2006; Manning

2007; Vecchi and Knutson 2008), which may nudge

reanalysis TCs toward slightly stronger intensities.

A second plausible explanation is that increases in re-

analysis horizontal resolution with latitude (approxi-

mately 16% increase from the equator to 308N) may

allow TCs to become better resolved with poleward

motion. A third factor may be that the greater frequency

of extratropical transition occurring at higher latitudes

(Hart and Evans 2001; Jones et al. 2003) results in the

expansion of the TC wind field (Evans and Hart 2008)

conceivably making these storms both easier to resolve

and better sampled by observations. Lastly, erroneous

values of TC intensity could be introduced due to the

methodology used since no attempt is made to discrimi-

nate whether a given intensity value is associated with the

TC in question or a separate entity (e.g., nearby fronts,

extratropical cyclones).

A second potential factor contributing to the lack of

stronger correlations between Best-Track and reanalysis

TC intensity is observed TC size. Correlations between

EBTR34 and reanalysis TC intensity yield values between

0.53 and 0.70 (20.71 and 20.53) for VMAX10m (MSLPmin;

Tables 3 and 4) representing the strongest relationship

between TC intensity and any other parameter. While
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FIG. 5. Plan view of the correlation coefficients between Best-Track and reanalysis VMAX10m for TCs passing within 250 km of each

grid point in the EPAC, NATL, and WPAC for a 28 latitude by 28 longitude grid. Hatching represent values of correlation coefficients that

are significantly different from zero at the 99% confidence level. Correlation coefficients are computed only at grid points at which at least

three distinctly named Best-Track TCs and 10 Best-Track entries are found. The grid is smoothed once with a nine-point smoother.
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FIG. 6. As in Fig. 5 but for correlation coefficients calculated between Best-Track and reanalysis MSLPmin. Note that mean values are not

computed within the WPAC due to the lack of availability of Best-Track MSLPmin within this basin.
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these correlations are either comparable or larger than

those in the Best-Track, that they are at least equivalent in

magnitude is significant since mean reanalysis VMAX10m

is generally less than 34 kt in all reanalyses except Best-

Track hurricane strength TCs in the CFSR and JRA-25.

What is likely occurring is that larger values of EBTR34

are acting as proxies for weaker, more easily resolvable,

gradients between the TC inner core and its environ-

ment. Additionally, these TCs may be more thoroughly

sampled by the observing system with increasing size.

Increases in EBTR34 with latitude (Merrill 1984; Kimball

and Mulekar 2004; Kossin et al. 2007) may also suggest

that observed changes in TC size are yielding increases in

reanalysis TC intensity with latitude.

3) COMPARISON OF INTENSITIES AMONG

REANALYSES

To explore mean dataset differences among reanalysis

TCs, mean VMAX10m and MSLPmin are presented for

the four intensity bins in Figs. 2b and 2c. The ERA-40,

ERA-I, JRA-25, and MERRA have approximately the

same VMAX10m for Best-Track tropical depressions

ranging from 19.7 to 21.4 kt. In contrast, the CFSR is noted

to have a mean intensity (27.8 kt) over 6 kt stronger than

the other datasets for Best-Track tropical depressions

comparable to the mean Best-Track value of 30 kt. For

comparison, MSLPmin of Best-Track tropical depressions

within the five datasets are approximately within 1 hPa of

each other ranging between 1006.3 and 1007.3 hPa,

which is similar to the mean Best-Track value of

1006.5 hPa. The underestimation of only mean VMAX10m

suggests that the coarse resolution of reanalyses prevents

these datasets from maintaining the pressure gradients

necessary to sustain Best-Track values of VMAX10m.

As Best-Track intensity increases, the coarse resolu-

tion of reanalyses results in the severe underestimation

of both VMAX10m and MSLPmin. Such a result is ex-

pected since the wind maximum in real hurricanes

becomes confined to increasingly smaller scales as the

TC intensifies (e.g., Kimball and Mulekar 2004), making

a fixed resolution reanalysis grid increasingly less likely

to resolve VMAX10m, yielding an increasingly large bias

in intensity. These discrepancies are most noticeable for

category 3–5 TCs in which mean reanalysis VMAX10m is

between 27.8 and 47.5 kt compared to the mean Best-Track

value of 115.6 kt. Of the five reanalyses, the CFSR and

JRA-25 have substantially larger VMAX10m compared to

the remaining reanalyses with differences of at least 16.4

and 6.5 kt, respectively. While mean MSLPmin within the

CFSR and JRA-25 are close to each other in magnitude at

993.2 and 993.8 hPa, respectively, the remaining three re-

analyses have mean MSLPmin that are greater than these

two datasets with values ranging between 997.4 and

999.9 hPa. The large disparities between the CFSR and

JRA-25 with the rest of the reanalyses appear to be due

to the use of vortex relocation and TC wind profile re-

trievals, respectively. Similar to VMAX10m, mean rean-

alysis TC MSLPmin is significantly weaker than the mean

Best-Track MSLPmin (946.3 hPa) for category 3–5 TCs.

A closer examination of the intensity of reanalysis

TCs reveals that their underrepresentation is beyond what

can be attributed to the coarse resolution of the re-

analyses (Walsh et al. 2007). Specifically, benchmarks of

VMAX10m provided by Walsh et al. (2007) for tropical

storm strength TCs resampled to the resolution of the

five reanalyses range between 28.8 and 33.4 kt com-

pared to actual values of reanalysis VMAX10m with

magnitudes between 20.8 and 29.9 kt. Several factors

may potentially be responsible for the underestimation of

VMAX10m beyond that due to the coarse resolution of the

reanalyses including the choice of model physics and the

manner in which available observations are assimilated.

To quantify these effects on more intense TCs, Walsh et al.

(2007) also provide expected values of observed VMAX10m

for NATL TC Andrew (1992) during its peak intensity

(VMAX10m 5 150 kt; 1800 UTC 23 August 1992) re-

sampled to a range of coarser resolutions to serve as

a benchmark for models. The horizontal resolution of

each of the reanalyses should yield resampled VMAX10m

ranging from approximately 58 to 100 kt. The actual

range of VMAX10m within the reanalyses is 17.2238.2 kt,

which is well below VMAX10m expected as a result of the

coarse grid spacing. These results imply that factors out-

side of resolution conspire to play an even larger role

with increasing Best-Track intensity as evidenced by the

underestimation of the resampled intensity of 20 kt or

more for TC Andrew (Walsh et al. 2007).

4) LIFE CYCLE OF TC INTENSITY AMONG

BEST-TRACK AND REANALYSES

While an underrepresentation of reanalysis TC intensity

beyond that justified by Walsh et al. (2007) has been

demonstrated, reanalyses could still be of utility for ex-

amining TC intensity if they are able to mimic the evolu-

tion of normalized Best-Track TC intensity with age (life

cycle of TC intensity). Before analyzing the composite life

cycle of normalized TC intensity, it is important to de-

scribe the relationship between age and intensity found

within the Best-Track. The intensification and subsequent

decay of TC intensity during its lifespan suggests that the

correlation between Best-Track age and Best-track in-

tensity would be relatively weak. Indeed, the NATL and

WPAC exhibit weak correlations between Best-Track

TC age and intensity with correlations of 0.25 (20.31)

and 0.22, respectively, for VMAX10m (MSLPmin; Tables

3 and 4) with significantly weaker correlations found in
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the EPAC (0.07 for VMAX10m; 20.06 for MSLPmin). Of

the two basins, the NATL is found to have the strongest

linear relationship between Best-Track age and Best-

Track intensity. Of the three basins, the EPAC (NATL)

displays the propensity to reach peak intensity earliest

(latest) on day 3.50 (day 8.00) with respect to the time of

genesis in the Best-Track. Best-track EPAC TCs (5.00

days) also tend to have slightly shorter lifespans com-

pared to NATL (5.32 days) and WPAC TCs (5.61 days).

The relationship between Best-Track age and reanalysis

VMAX10m (MSLPmin), as described by correlation co-

efficients, is stronger in the NATL and WPAC for all

reanalyses except the ERA-40 with values ranging be-

tween 0.25 and 0.47 (20.39 and 20.26). These correla-

tions between Best-Track age and reanalysis TC intensity

are generally larger than those between Best-Track age

and Best-Track TC intensity. In contrast, all TCs within

the EPAC consistently exhibit correlation coefficients

with significantly smaller magnitudes than in the Best-

Track, implying the absence of any strong relationships.

While the correlation coefficients help quantify the

strength of the relationship between age and intensity,

they do not capture the nonlinearity between these two

parameters. To further explore the relationship between

age and intensity in the Best-Track and reanalyses, nor-

malized VMAX10m (NVMAX10m) for all TCs in the

NATL and WPAC are categorized and averaged ac-

cording to maximum lifetime Best-Track TC intensity and

Best-Track age (Fig. 7). Normalized MSLPmin is not shown

but is found to exhibit similar tendencies to NVMAX10m.

EPAC TCs are excluded from the calculations given

that the relationship between age and intensity is not as

robust and the timing of peak intensity differs substantially

from the other basins. According to Fig. 7, Best-Track

NVMAX10m generally increases more precipitously prior

to peak intensity than in the reanalyses (0.27s day21

for the Best-Track versus 0.11 to 0.21s day21 for the re-

analyses between the time of Best-Track genesis and the

time of peak intensity; s is defined as the standard de-

viation of intensity within each dataset) reaching maxi-

mum values at day 5.50 relative to time of TC genesis. In

contrast, reanalyses exhibit peak NVMAX10m occurring

7.50 to 11.50 days after Best-Track genesis. The combination

of the later time of peak NVMAX10m and smaller in-

tensification rates yields a larger peak value of normal-

ized intensity in reanalyses compared to the Best-Track.

These results can generally be extended to each in-

tensity bin found in Figs. 7b–e with the caveat that max-

imum values of NVMAX10m for category 3–5 TCs are

stronger in the Best-Track than for the reanalyses. Each

intensity bin exhibits Best-Track NVMAX10m peaking

earlier (between days 1.25 and 3.50) in the composite life

cycle for all TC intensity bins. Although reanalysis

NVMAX10m peaks earlier for each intensity bin than

for the composite of all TCs, the maximum value of

NVMAX10m still occurs later than Best-Track NVMAX10m

within each bin. Differences in the composite life cycle

are most apparent for Best-Track category 3–5 strength

TCs given that intensity increases and decreases most

strongly in the Best-Track compared to reanalysis TCs,

which exhibit longer, more uniform intensification ten-

dencies and shorter intervals of decay.

A number of factors are likely responsible for the

stronger than observed nonphysical relationship between

Best-Track TC age and reanalysis TC intensity including

the occurrence of larger observed TC sizes with increasing

Best-Track age (Merrill 1984; Weatherford and Gray

1988; Cocks and Gray 2002; Kimball and Mulekar 2004;

Kossin et al. 2007; Chavas and Emanuel 2010), which

would yield more easily resolvable TCs. Additionally,

more gradual intensification of reanalysis TCs is expected

owing to the inability of reanalyses to resolve the TC

inner core and the associated nonlinear intensification

processes (e.g., Shapiro and Willoughby 1982). Another

factor may be that TCs become more intense through the

assimilation of observations during each analysis cycle

(which are generally more prevalent later in life outside

the EPAC) helping to nudge these storms toward stron-

ger intensities over time. If this relationship is important,

then the shorter lifespan of TCs may partially explain why

storm intensity is muted within the EPAC relative to

other basins. Further, the sparseness of observations in

the EPAC may be partially responsible for the absence of

stronger correlations between age and intensity for rean-

alysis TCs (Tables 3 and 4). Lastly, many of the plausible

explanations for the relationship between reanalysis TC

intensity and Best-Track latitude may also be responsible

for correlations between reanalysis TC intensity and Best-

Track age. Conversely, Best-Track age may be also con-

tributing to the relatively larger correlations between

reanalysis TC intensity and Best-Track latitude (Tables 3

and 4) since TCs generally move poleward over time.

c. Examples of nonphysical TC structure

The extensive evaluation of TC position and intensity

presented here made a similar analysis of TC structure

beyond the scope of this study. Nonetheless, several ex-

amples of nonphysical structures were discovered that are

important to document here as they may impact the

recommendations provided from exclusively examining

TC position and intensity. In particular, a nontrivial

fraction of TCs within the CFSR contain significant dis-

continuities aligned along lines of longitude within the

mass and momentum field of the TC (P. Pegion and H.

Winterbottom 2011, personal communication). Specific
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FIG. 7. Mean life cycle of normalized VMAX10m (s, or standard deviation, of each dataset; lineplot) as a function of Best-Track TC age

(days) for TCs within the NATL and WPAC for (a) all TCs, (b) tropical storms, (c) category 1–2 TCs, and (d) category 3–5 TCs for the

Best-Track and five reanalyses. Normalized VMAX10m is binned according to the maximum Best-Track intensity category that a given TC

reaches during its lifetime. Specifically, category 3–5 TCs consist of the mean life cycle of all TCs that have reached the category 3–5

intensity threshold at least once within the Best-Track. The number of distinctly named Best-Track TCs used to calculate the mean

normalized VMAX10m for each day is given by black bars for the CFSR, ERA-40, JRA-25, and MERRA while the number of distinctly

named Best-Track TCs for the ERA-I are represented by gray bars. The CFSR, ERA-40, ERA-I, JRA-25, MERRA, and Best-Track

correspond with color coding of blue, red, green, cyan, orange, and light green, respectively. Mean values are only calculated for cases in

which 10 distinctly named Best-Track TCs are found. The error bars denote the standard error of the mean.
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examples of these nonphysical structures in three differ-

ent basins are found in Figs. 8a–c for EPAC TC Guil-

lermo (1997), NATL TC Katrina (2005), and WPAC TC

Orchid (1991), respectively. These discontinuities mani-

fest themselves throughout the atmosphere as demon-

strated by a vertical cross section (Fig. 8d) corresponding

to Fig. 8c. The seemingly systematic nature of these non-

physical structures raises questions as to whether an in-

tercomparison of TC structure among reanalyses would

yield similar results to those for track and intensity for the

CFSR. A related point of note regarding the CFSR is that

the vortex relocation was originally intended to not be used

when the vortex was near elevated terrain (elevation

greater than 500 m). While mass variables in the CFSR

were not relocated under these circumstances, momen-

tum variables were erroneously relocated, potentially

introducing an imbalance in the analysis field (D. Kleist

2011, personal communication), which further argues for

a separate extensive analysis of reanalysis TC structure.

In contrast to the CFSR, the only physically incon-

sistent TC structures found within the ERA-I during this

cursory check are for TC Flo (1993) as seen in Fig. 9.

Specifically, a 101.7-kt wind speed at 10 m (reanalysis

MSLPmin 5 987.6 hPa) is found on the western side of

the reanalysis TC, which is not consistent with the mean

sea level pressure field (Fig. 9a). Moreover, the 10-m

wind speed should not be significantly greater than the

wind speed at any vertical level within the lower tro-

posphere (Figs. 9a and 9b) as is found for this particular

case. Such a structure is physically inconsistent with

a warm-core cyclone given that wind speed should not

decrease with height above the surface in the planetary

boundary layer. Additionally, the wind maximum should

be located on the right side of motion since the storm is

moving briskly northeastward at 42.7 kt. Further, the

fact that VMAX10m is over 50 kt higher than the analysis

time 6 h prior and after (not shown) further suggests that

the structure is nonphysical. For comparison, TC Flo

FIG. 8. Plan view of 925-hPa geopotential height (gpm) for (a) TC Guillermo at 1800 UTC 2 Aug 1997 (Best-Track

VMAX10m 5 105 kt), (b) TC Katrina at 0000 UTC 26 Aug 2005 (Best-Track VMAX10m 5 70 kt), and (c) TC Orchid

at 1200 UTC 4 Oct 1991 (Best-Track VMAX10m 5 40 kt) in the CFSR. (d) Vertical cross section of geopotential

height anomalies (gpm) through the line of latitude (19.58N) intersecting the center of TC Orchid in (c). Anomalies

are computed relative to a CFSR climatology from 1982 to 2001.
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intensified from 55 to 60 kt during the first 6-h period

while maintaining a constant intensity during the fol-

lowing 6 h within the Best-Track. Furthermore, the 6-h

increase in TC intensity in the ERA-I for TC Flo is

greater than the largest 6-h increase in Best-Track TC

intensity [45 kt for EPAC TC Kiko (1983)] within any

of the three basins for the period of study. The causes of

these nonphysical structures are being investigated in

both the CFSR (B. Kistler and D. Kleist 2011, personal

communication) and the ERA-I (D. Dee 2010, personal

communication). These cases illustrate that statistics

based on a large composite do not tell the complete story

and can hide pertinent case to case differences that

would impact the calculation of quantities such as power

dissipation and integrated kinetic energy (Powell and

Reinhold 2007) that are dependent on TC structure.

4. Conclusions

The results presented in this study represent a com-

prehensive attempt at quantifying TC position differences

and intensity among five reanalysis datasets. Within the

NATL and WPAC, TC position differences are observed

to decrease toward observationally dense regions within

the ERA-40, ERA-I, and MERRA. The CFSR and

JRA-25 exhibit much smaller position differences than

the ERA-40, ERA-I, and MERRA because of the use of

vortex relocation and TC wind profile retrievals, re-

spectively. More modest relationships are found between

reanalysis TC intensity and position difference in each

basin. Position difference is also found to decrease with

increasing Best-Track intensity in all three basins. Of the

three basins studied, the EPAC is generally found to

have the largest mean position differences potentially due

to a relative dearth of observations, the movement of TCs

away from the most observation dense portion of the

basin over time, the comparatively weak intensities of

reanalysis TCs, and the sharp gradient in elevation

between the EPAC and Mexico.

Consistent with prior research, the coarse resolution

of the reanalyses results in a gross underestimation of

TC intensity relative to the Best-Track. However, that

underestimation appears to be even greater than that

explained solely by the coarse resolution of the datasets.

Correlation coefficients between Best-Track and rean-

alysis TC intensity show that at most only slightly greater

than half of the variance is explained. Moreover, grid-

ded maps of correlation coefficients between Best-Track

and reanalysis TC intensity are found to exhibit sub-

stantial variability in magnitude within each basin.

These results imply that substantial differences occur

between Best-Track and reanalysis TC intensity. Both

Best-Track latitude and extended Best-Track size have

comparable or stronger correlation coefficients with

reanalysis intensity within the NATL and WPAC rela-

tive to the correlations in the Best-Track. Compared to

the NATL and WPAC, intensity is more muted within

the EPAC possibly due to the sparseness of observa-

tions, the propagation of TCs away from the most ob-

servation dense portion of the basin with time, the

smaller mean size of TCs in this basin, the comparatively

shorter Best-Track lifespan of EPAC TCs, and the steep

elevation gradient in this basin. Of the five reanalyses,

the CFSR and JRA-25 are found to have both strongest

intensities, particularly for VMAX10m, and largest cor-

relations with Best-Track intensity.

FIG. 9. Plan view of (a) 10-m wind speed (kt, shaded) and minimum mean sea level pressure (hPa, contours) and (b)

700-hPa wind speed (kt, shaded) and 700-hPa geopotential height (gpm, contours) for Typhoon Flo at 1200 UTC

8 Oct 1993 (Best-Track VMAX10m 5 60 kt) in the ERA-I. The cyan arrow denotes the direction of motion of the TC,

traveling at a speed of 42.7 kt. As a note, the nonphysical maximum on the western side of the TC does not exist either

at 6 h prior or after the time in question.
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With regards to the life cycle of TC intensity, all three

basins exhibit relatively weak correlations between age

and intensity within the Best-Track with significant dif-

ferences found in the strength of this relationship as well

as the timing of peak intensity within each basin. For re-

analysis TCs within the NATL and WPAC, the strength of

this relationship was generally found to be stronger than

the Best-Track while the EPAC typically exhibited weaker

correlations. Specifically, reanalysis TCs are found to

intensify too slowly prepeak intensity and reach peak

intensity too late compared to their Best-Track counter-

parts. The combination of the large biases in reanalysis

intensity together with the weaker than observed re-

lationship between age and intensity implies that the life

cycle of reanalysis TC intensity is markedly different for

TCs in the EPAC compared to the NATL and WPAC.

The results presented here suggest that caution is

needed regarding the use of reanalyses in studying TC

intensity or position. Rather than assuming the reanalysis

TC is located at the grid point closest to its Best-Track

counterpart, these results indicate that the independent

tracking of reanalysis TCs should be strongly considered

since mean position differences can be hundreds of ki-

lometers depending on the TC location and reanalysis

used. The discrepancies in TC position and intensity with

the Best-Track may also impact the fidelity of the

large-scale environment on short time scales owing to

the misrepresentation of feedbacks between TCs and

these larger scales. Furthermore, the underestimation of

both the magnitude of reanalysis TC intensity and the life

cycle of reanalysis TC intensity (particularly major TCs)

relative to the Best-Track suggests that the bias correc-

tion of reanalysis TC intensity would not yield an in-

tensity distribution comparable to the Best-Track. Given

that metrics such as accumulated cyclone energy (Bell

and Chelliah 2006) and power dissipation used for

quantifying intensity are more strongly influenced by

the occurrence of intense TCs, the inability to properly

capture the true variability of VMAX10m would be

a significant caveat in using reanalyses for such studies.
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